Dr. Frank Hennrich
- Senior Scientist
- Trennmethoden Kohlenstoffnanoröhren
- Gruppe:
- Raum: 230
- Tel.: +49 721 608-26416
- Fax: +49 721 608-26368
- frank hennrich ∂ kit edu
Institut für Nanotechnologie
Campus Nord
Hermann-von-Helmholtz-Platz 1
76344 Eggenstein-Leopoldshafen
Recent Publications
-
Imagawa, T.; Ito, S.; Hennrich, F.; Neumaier, M.; Weis, P.; Koyasu, K.; Kappes, M. M.; Tsukuda, T. (2024). Revisiting the structure of [PdAu
(PPh ) (CN)] produced by atmospheric pressure plasma irradiation of [PdAu (PPh ) ] in methanol. The Journal of Chemical Physics, 161 (2), Art.-Nr.: 024303. doi:10.1063/5.0219959 -
Li, M.-K.; Dehm, S.; Kappes, M. M.; Hennrich, F.; Krupke, R. (2024). Correlation Measurements for Carbon Nanotubes with Quantum Defects. ACS Nano, 18 (13), 9525–9534. doi:10.1021/acsnano.3c12530
-
Hennrich, F.; Ito, S.; Weis, P.; Neumaier, M.; Takano, S.; Tsukuda, T.; Kappes, M. M. (2024). Cyclic ion mobility of doped [MAu
L ] superatoms and their fragments (M = Ni, Pd and Pt; L = alkynyl). Physical Chemistry Chemical Physics, 26 (10), 8408 – 8418. doi:10.1039/D3CP06192B -
Ovvyan, A. P.; Li, M.-K.; Gehring, H.; Beutel, F.; Kumar, S.; Hennrich, F.; Wei, L.; Chen, Y.; Pyatkov, F.; Krupke, R.; Pernice, W. H. P. (2023). An electroluminescent and tunable cavity-enhanced carbon-nanotube-emitter in the telecom band. Nature Communications, 14 (1), Art.Nr.: 3933. doi:10.1038/s41467-023-39622-y
-
Gordeev, G.; Rosenkranz, T.; Hennrich, F.; Reich, S.; Krupke, R. (2022). Light Control over Chirality Selective Functionalization of Substrate Supported Carbon Nanotubes. The Journal of Physical Chemistry C, 126 (23), 9803–9812. doi:10.1021/acs.jpcc.2c01628
-
Li, M.-K.; Riaz, A.; Wederhake, M.; Fink, K.; Saha, A.; Dehm, S.; He, X.; Schöppler, F.; Kappes, M. M.; Htoon, H.; Popov, V. N.; Doorn, S. K.; Hertel, T.; Hennrich, F.; Krupke, R. (2022). Electroluminescence from Single-Walled Carbon Nanotubes with Quantum Defects. ACS Nano, 16 (8), 11742–11754. doi:10.1021/acsnano.2c03083
-
Özdemir, A. D.; Barua, P.; Pyatkov, F.; Hennrich, F.; Chen, Y.; Wenzel, W.; Krupke, R.; Fediai, A. (2021). Contact spacing controls the on-current for all-carbon field effect transistors. Communications Physics, 4 (1), Art.-Nr.: 246. doi:10.1038/s42005-021-00747-5
-
Xu, L.; Valášek, M.; Hennrich, F.; Fischer, R.; Kappes, M. M.; Mayor, M. (2021). Degradable Fluorene- And Carbazole-Based Copolymers for Selective Extraction of Semiconducting Single-Walled Carbon Nanotubes. Macromolecules, 54 (9), 4363–4374. doi:10.1021/acs.macromol.1c00465
-
Li, W.; Hennrich, F.; Flavel, B. S.; Dehm, S.; Kappes, M.; Krupke, R. (2021). Erratum to: Principles of carbon nanotube dielectrophoresis. Nano research, 14, Art.Nr. 2470. doi:10.1007/s12274-021-3378-z
-
Xu, L.; Valášek, M.; Hennrich, F.; Sedghamiz, E.; Penaloza-Amion, M.; Häussinger, D.; Wenzel, W.; Kappes, M. M.; Mayor, M. (2021). Enantiomeric Separation of Semiconducting Single-Walled Carbon Nanotubes by Acid Cleavable Chiral Polyfluorene. ACS Nano, 15 (3), 4699–4709. doi:10.1021/acsnano.0c09235
-
Janissek, A.; Lenz, J.; Giudice, F. D.; Gaulke, M.; Pyatkov, F.; Dehm, S.; Hennrich, F.; Wei, L.; Chen, Y.; Fediai, A.; Kappes, M.; Wenzel, W.; Krupke, R.; Weitz, R. T. (2021). Ionic liquid gating of single-walled carbon nanotube devices with ultra-short channel length down to 10 nm. Applied Physics Letters, 118 (6), Art.-Nr.: 063101. doi:10.1063/5.0034792
-
Li, W.; Hennrich, F.; Flavel, B. S.; Dehm, S.; Kappes, M.; Krupke, R. (2021). Principles of carbon nanotube dielectrophoresis. Nano research, 14 (7), 2188–2206. doi:10.1007/s12274-020-3183-0
-
Kumar, S.; Dagli, D.; Dehm, S.; Das, C.; Wei, L.; Chen, Y.; Hennrich, F.; Krupke, R. (2020). Vanishing Hysteresis in Carbon Nanotube Transistors Embedded in Boron Nitride/Polytetrafluoroethylene Heterolayers. Physica status solidi / Rapid research letters, 14 (8), Art.Nr. 2000193. doi:10.1002/pssr.202000193
-
Gaulke, M.; Janissek, A.; Peyyety, N. A.; Alamgir, I.; Riaz, A.; Dehm, S.; Li, H.; Lemmer, U.; Flavel, B. S.; Kappes, M. M.; Hennrich, F.; Wei, L.; Chen, Y.; Pyatkov, F.; Krupke, R. (2020). Low-Temperature Electroluminescence Excitation Mapping of Excitons and Trions in Short-Channel Monochiral Carbon Nanotube Devices. ACS nano, 14 (3), 2709–2717. doi:10.1021/acsnano.9b07207
-
Weis, P.; Hennrich, F.; Fischer, R.; Schneider, E. K.; Neumaier, M.; Kappes, M. M. (2019). Probing the structure of giant fullerenes by high resolution trapped ion mobility spectrometry. Physical chemistry, chemical physics, 21 (35), 18877–18892. doi:10.1039/c9cp03326b
-
Hennrich, F.; Schneider, E.; Weis, P.; Kappes, M. M. (2019). Comparing Empty and Filled Fullerene Cages with High-Resolution Trapped Ion Mobility Spectrometry. Journal of the American Society for Mass Spectrometry, 30 (10), 1973–1980. doi:10.1007/s13361-019-02250-2
-
Selvasundaram, P. B.; Kraft, R.; Li, W.; Fischer, R.; Kappes, M. M.; Hennrich, F.; Krupke, R. (2019). Measuring in Situ Length Distributions of Polymer-Wrapped Monochiral Single-Walled Carbon Nanotubes Dispersed in Toluene with Analytical Ultracentrifugation. Langmuir, 35 (10), 3790–3796. doi:10.1021/acs.langmuir.9b00005
-
Riaz, A.; Alam, A.; Selvasundaram, P. B.; Dehm, S.; Hennrich, F.; Kappes, M. M.; Krupke, R. (2019). Near-Infrared Photoresponse of Waveguide-Integrated Carbon Nanotube-Silicon Junctions. Advanced electronic materials, 5 (1), 1800265. doi:10.1002/aelm.201800265
-
Li, H.; Gordeev, G.; Wasserroth, S.; Chakravadhanula, V. S. K.; Neelakandhan, S. K. C.; Hennrich, F.; Jorio, A.; Reich, S.; Krupke, R.; Flavel, B. S. (2017). Inner- and outer-wall sorting of double-walled carbon nanotubes. Nature nanotechnology. doi:10.1038/nnano.2017.207
-
Alam, A.; Dehm, S.; Hennrich, F.; Zakharko, Y.; Graf, A.; Pfohl, M.; Hossain, I. M.; Kappes, M. M.; Zaumseil, J.; Krupke, R.; Flavel, B. S. (2017). Photocurrent spectroscopy of dye-sensitized carbon nanotubes. Nanoscale, 9 (31), 11205–11213. doi:10.1039/c7nr04022a
-
Bestgen, S.; Fuhr, O.; Breitung, B.; Chakravadhanula, V. S. K.; Guthausen, G.; Hennrich, F.; Yu, W.; Kappes, M. M.; Roesky, P. W.; Fenske, D. (2017). [Ag₁₁₅S₃₄(SCH₂C₆H₄
Bu)₄7(dpph)₆]: synthesis, crystal structure and NMR investigations of a soluble silver chalcogenide nanocluster. Chemical science, 8 (3), 2235–2240. doi:10.1039/c6sc04578b -
Pyatkov, F.; Khasminskaya, S.; Kovalyuk, V.; Hennrich, F.; Kappes, M. M.; Goltsman, G. N.; Pernice, W. H. P.; Krupke, R. (2017). Sub-nanosecond light-pulse generation with waveguide-coupled carbon nanotube transducers. Beilstein journal of nanotechnology, 8 (1), 38–44. doi:10.3762/bjnano.8.5
-
Laudenbach, J.; Schmid, D.; Herziger, F.; Hennrich, F.; Kappes, M.; Muoth, M.; Haluska, M.; Hof, F.; Backes, C.; Hauke, F.; Hirsch, A.; Maultzsch, J. (2017). Diameter dependence of the defect-induced Raman modes in functionalized carbon nanotubes. Carbon, 112, 1–7. doi:10.1016/j.carbon.2016.10.065
-
Li, W.; Hennrich, F.; Flavel, B. S.; Kappes, M. M.; Krupke, R. (2016). Chiral-index resolved length mapping of carbon nanotubes in solution using electric-field induced differential absorption spectroscopy. Nanotechnology, 27 (37), Art.Nr.:375706. doi:10.1088/0957-4484/27/37/375706
-
Khasminskaya, S.; Pyatkov, F.; Słowik, K.; Ferrari, S.; Kahl, O.; Kovalyuk, V.; Rath, P.; Vetter, A.; Hennrich, F.; Kappes, M. M.; Gol’tsman, G.; Korneev, A.; Rockstuhl, C.; Krupke, R.; Pernice, W. H. P. (2016). Fully integrated quantum photonic circuit with an electrically driven light source. Nature photonics. doi:10.1038/nphoton.2016.178
-
Pyatkov, F.; Fütterling, V.; Khasminskaya, S.; Flavel, B. S.; Hennrich, F.; Kappes, M. M.; Krupke, R.; Pernice, W. H. P. (2016). Cavity-enhanced light emission from electrically driven carbon nanotubes. Nature photonics, 10 (6), 420–428. doi:10.1038/nphoton.2016.70
-
Hennrich, F.; Li, W.; Fischer, R.; Lebedkin, S.; Krupke, R.; Kappes, M. M. (2016). Length-Sorted, Large-Diameter, Polyfluorene-Wrapped Semiconducting Single-Walled Carbon Nanotubes for High-Density, Short-Channel Transistors. ACS Nano, 10 (2), 1888–1895. doi:10.1021/acsnano.5b05572
-
Moore, K. E.; Pfohl, M.; Tune, D. D.; Hennrich, F.; Dehm, S.; Chakravadhanula, V. S. K.; Kübel, C.; Krupke, R.; Flavel, B. S. (2015). Sorting of double-walled carbon nanotubes according to their outer wall electronic type via a gel permeation method. ACS nano, 9 (4), 3849–3857. doi:10.1021/nn506869h
-
Thiele, C.; Vieker, H.; Beyer, A.; Flavel, B. S.; Hennrich, F.; Munoz Torres, D.; Eaton, T. R.; Mayor, M.; Kappes, M. M.; Gölzhäuser, A.; Löhneysen, H. von; Krupke, R. (2014). Fabrication of carbon nanotube nanogap electrodes by helium ion sputtering for molecular contacts. Applied physics letters, 104 (10), Art.Nr. 103102. doi:10.1063/1.4868097
-
Gerstel, P.; Klumpp, S.; Hennrich, F.; Poschlad, A.; Meded, V.; Blasco, E.; Wenzel, W.; Kappes, M. M.; Barner-Kowollik, C. (2014). Highly Selective Dispersion of Single-Walled Carbon Nanotubes via Polymer Wrapping: A Combinatorial Study via Modular Conjugation. ACS macro letters, 3 (1), 10–15. doi:10.1021/mz400472q
-
Berton, N.; Lemasson, F.; Poschlad, A.; Meded, V.; Tristram, F.; Wenzel, W.; Hennrich, F.; Kappes, M. M.; Mayor, M. (2014). Selective Dispersion of Large-Diameter Semiconducting Single-Walled Carbon Nanotubes with Pyridine-Containing Copolymers. Small, 10 (2), 360–367. doi:10.1002/smll.201301295
-
Weis, P.; Schwarz, U.; Hennrich, F.; Wagner, D.; Bräse, S.; Kappes, M. (2014). Azaporphine guest-host complexes in solution and gas-phase: evidence for partially filled nanoprisms and exchange reactions. Physical Chemistry Chemical Physics, 16 (13), 6225–6232. doi:10.1039/C3CP55486D
-
Engel, M.; Hennrich, F.; Krupke, R. (2014). Klein, schnell, hell. Kohlenstoff-Nanoröhren. Physik in unserer Zeit, 45, 243–248. doi:10.1002/piuz.201401364
-
Flavel, B. S.; Moore, K. E.; Pfohl, M.; Kappes, M. M.; Hennrich, F. (2014). Correction to separation of single-walled carbon nanotubes with a gel permeation chromatography system. ACS nano, 8, 9687–9687. doi:10.1021/nn504707k
-
Moore, K. E.; Pfohl, M.; Hennrich, F.; Chakradhanula, V. S. K.; Kübel, C.; Kappes, M. M.; Shapter, J. G.; Krupke, R.; Flavel, B. S. (2014). Separation of double-walled carbon nanotubes by size exclusion column chromatography. ACS Nano, 8, 6756–6764. doi:10.1021/nn500756a
-
Flavel, B. S.; Moore, K. E.; Pfohl, M.; Kappes, M. M.; Hennrich, F. (2014). Separation of single-walled carbon nanotubes with a gel permeation chromatography system. ACS nano, 8, 1817–1826. doi:10.1021/nn4062116
-
Mayor, M.; Hennrich, F.; Lemasson, F.; Berton, N.; Tittmann, J.; Kappes, M. (2013). Tailormade (co)-polymers for the selective dispersion of single wall carbon nanotubes: An empiric approach. Abstracts of Papers of the American Chemical Society, 245, 25-PMSE.
-
Laudenbach, J.; Hennrich, F.; Telg, H.; Kappes, M.; Maultzsch, J. (2013). Resonance behavior of the defect-induced Raman mode of single-chirality enriched carbon nanotubes. Physical Review B - Condensed Matter and Materials Physics, 87 (16), 165423/1–7. doi:10.1103/PhysRevB.87.165423
-
Hatting, B.; Heeg, S.; Ataka, K.; Heberle, J.; Hennrich, F.; Kappes, M. M.; Krupke, R.; Reich, S. (2013). Fermi energy shift in deposited metallic nanotubes: A Raman scattering study. Physical Review B - Condensed Matter and Materials Physics, 87 (16), 165442/1–5. doi:10.1103/PhysRevB.87.165442
-
Flavel, B. S.; Kappes, M. M.; Krupke, R.; Hennrich, F. (2013). Separation of single-walled carbon nanotubes by 1-dodecanol-mediated size-exclusion chromatography. ACS Nano, 7 (4), 3557–3564. doi:10.1021/nn4004956
-
Stürzl, N.; Lebedkin, S.; Klumpp, S.; Hennrich, F.; Kappes, M. M. (2013). Novel micro-Raman setup with tunable laser excitation for time-efficient resonance Raman microscopy and imaging. Analytical Chemistry, 85 (9), 4554–4559. doi:10.1021/ac4001833
-
Pelka, J.; Gehrke, H.; Rechel, A.; Kappes, M.; Hennrich, F.; Hartinger, C. G.; Marko, D. (2013). DNA damaging properties of single walled carbon nanotubes in human colon carcinoma cells. Nanotoxicology, 7 (1), 2–20. doi:10.3109/17435390.2011.626536
-
Schmucker, W.; Klumpp, S.; Hennrich, F.; Kappes, M.; Wagenknecht, H.-A. (2013). A simple pyrene "click"-type modification of DNA affects solubilisation and photoluminescence of single-walled carbon nanotubes. RSC Advances, 3 (18), 6331–6333. doi:10.1039/c3ra00163f
-
Tune, D. D.; Hennrich, F.; Dehm, S.; Klein, M. F. G.; Glaser, K.; Colsmann, A.; Shapter, J. G.; Lemmer, U.; Kappes, M. M.; Krupke, R.; Flavel, B. S. (2013). The role of nanotubes in carbon nanotube-silicon solar cells. Advanced Energy Materials, 3 (8), 1091–1097. doi:10.1002/aenm.201200949
-
Laudenbach, J.; Hennrich, F.; Kappes, M.; Maultzsch, J. (2012). Resonance behavior of defect-induced modes in metallic and semiconducting single-walled carbon nanotubes. Physica Status Solidi (B) Basic Research, 249 (12), 2460–2464. doi:10.1002/pssb.201200175
-
Stürzl, N.; Lebedkin, S.; Peng, F.; Li, Y.; Hennrich, F.; Kappes, M. M. (2012). Simultaneous detection of Raman scattering and near-infrared photoluminescence in one imaging microscope. Review of Scientific Instruments, 83 (6), 063709/1–6. doi:10.1063/1.4731684
-
Berton, N.; Lemasson, F.; Hennrich, F.; Kappes, M. M.; Mayor, M. (2012). Influence of molecular weight on selective oligomer-assisted dispersion of single-walled carbon nanotubes and subsequent polymer exchange. Chemical Communications, 48 (19), 2516–2518. doi:10.1039/c2cc17508h
-
Telg, H.; Duque, J. G.; Staiger, M.; Tu, X.; Hennrich, F.; Kappes, M. M.; Zheng, M.; Maultzsch, J.; Thomsen, C.; Doorn, S. K. (2012). Chiral index dependence of the G⁺ and G⁻ Raman modes in semiconducting carbon nanotubes. ACS Nano, 6 (1), 904–911. doi:10.1021/nn2044356
-
Lemasson, F.; Berton, N.; Tittmann, J.; Hennrich, F.; Kappes, M. M.; Mayor, M. (2012). Polymer library comprising fluorene and carbazole homo- and copolymers for selective single-walled carbon nanotubes extraction. Macromolecules, 45 (2), 713–722. doi:10.1021/ma201890g
-
Gerstel, P.; Klumpp, S.; Hennrich, F.; Altintas, O.; Eaton, T. R.; Mayor, M.; Barner-Kowollik, C.; Kappes, M. M. (2012). Selective dispersion of single-walled carbon nanotubes via easily accessible conjugated click polymers. Polymer chemistry, 3 (8), 1966–1970. doi:10.1039/c2py20161e
-
Pfeiffer, M. H. P.; Stürzl, N.; Marquardt, C. W.; Engel, M.; Dehm, S.; Hennrich, F.; Kappes, M. M.; Lemmer, U.; Krupke, R. (2011). Electroluminescence from chirality-sorted (9,7)-semiconducting carbon nanotube devices. Optics Express, 19 (23), A1184-A1189. doi:10.1364/OE.19.0A1184
-
Mastronardi, M. L.; Hennrich, F.; Henderson, E. J.; Maier-Flaig, F.; Blum, C.; Reichenbach, J.; Lemmer, U.; Kübel, C.; Wang, D.; Kappes, M. M.; Ozin, G. A. (2011). Preparation of Monodisperse Silicon Nanocrystals Using Density Gradient Ultracentrifugation. Journal of the American Chemical Society, 133 (31), 11928–11931. doi:10.1021/ja204865t
-
Hennrich, F.; Kappes, M. M.; Klinger, M.; Unterreiner, A.-N. (2011). Ultrafast Dynamics of the First Excited State of Quasi Monodispersed Single-Walled (9,7) Carbon Nonotubes. The journal of physical chemistry <Washington, DC> / C, 115 (48), 23711–23717. doi:10.1021/jp2075176
-
Thiele, C.; Engel, M.; Hennrich, F.; Kappes, M. M.; Johnsen, K.-P.; Frase, C. G.; Löhneysen, H. von; Krupke, R. (2011). Controlled fabrication of single-walled carbon nanotube electrodes by electron-beam-induced oxidation. Applied physics letters, 99 (17), Art.Nr. 173105. doi:10.1063/1.3656736
-
Lemasson, F.; Tittmann, J.; Hennrich, F.; Stürzl, N.; Malik, S.; Kappes, M. M.; Mayor, M. (2011). Debundling, selection and release of SWNTs using fluorene-based photocleavable polymers. Chemical communications, 47 (26), 7428–7430. doi:10.1039/C1CC11400J
-
Blum, C.; Stuerzl, N.; Hennrich, F.; Lebedkin, S.; Heeg, S.; Dumlich, H.; Reich, S.; Kappes, M. M. (2011). Selective Bundling of Zigzag Single-Walled Carbon Nanotubes. ACS nano, 5 (4), 2847–2854. doi:10.1021/nn1033746
-
Berton, N.; Lemasson, F.; Tittmann, J.; Stürzl, N.; Hennrich, F.; Kappes, M. M.; Mayor, M. (2011). Copolymer-Controlled Diameter-Selective Dispersion of Semiconducting Single-Walled Carbon Nanotubes. Chemistry of Materials, 23 (8), 2237–2249. doi:10.1021/cm200275v
-
Ganzhorn, M.; Vijayaraghavan, A.; Dehm, S.; Hennrich, F.; Green, A. A.; Fichtner, M.; Voigt, A.; Rapp, M.; Löhneysen, H. von; Hersam, M. C.; Kappes, M. M.; Krupke, R. (2011). Hydrogen sensing with diameter- and chirality-sorted carbon nanotubes. ACS Nano, 5 (3), 1670–1676. doi:10.1021/nn101992g
-
Lemasson, F. A.; Strunk, T.; Gerstel, P.; Hennrich, F.; Lebedkin, S.; Barner-Kowollik, C.; Wenzel, W.; Kappes, M. M.; Mayor, M. (2011). Selective dispersion of single walled carbon nanotubes with specific chiral indices by poly(N-decyl-2,7-carbazole). Journal of the American Chemical Society, 133 (4), 652–655. doi:10.1021/ja105722u
-
Dumlich, H.; Gegg, M.; Hennrich, F.; Reich, S. (2011). Bundle and chirality influences on properties of carbon nanotubes studied with van der Waals density functional theory. Physica status solidi (b), 248, 2589–2592. doi:10.1002/pssb.201100212
-
Vijayaraghavan, A.; Hennrich, F.; Stürzl, N.; Engel, M.; Ganzhorn, M.; Oron-Carl, M.; Marquardt, C. W.; Dehm, S.; Lebedkin, S.; Kappes, M. M.; Krupke, R. (2010). Toward Single-Chirality Carbon Nanotube Device Arrays. ACS nano, 4 (5), 2748–2753. doi:10.1021/nn100337t
-
Stuparu, A.; Stroh, C.; Hennrich, F.; Kappes, M. M. (2010). Dispersion of Single Walled Carbon Nanotubes using Poly(3-dodecylthiophene-2,5-diyl). Physica Status Solidi (b), 247 (11-12), 2653–2655. doi:10.1002/pssb.201000106
-
Essig, S.; Marquardt, C. W.; Vijayaraghavan, A.; Ganzhorn, M.; Dehm, S.; Hennrich, F.; Ou, F.; Green, A. A.; Scasia, C.; Bonaccorso, F.; Bohnen, K.-P.; Löhneysen, H. von; Kappes, M. M.; Ajayan, P.; Hersam, M. C.; Ferrari, A.; Krupke, R. (2010). Phonon-Assisted Electroluminescence from Metallic Carbon Nanotubes and Graphene. Nano letters, 10 (5), 1589–1594. doi:10.1021/nl9039795
-
Quintilla, A.; Hennrich, F.; Lebedkin, S.; Kappes, M. M.; Wenzel, W. (2010). Influence of endohedral water on diameter sorting of single-walled carbon nanotubes by density gradient centrifugation. Physical chemistry, chemical physics, 12 (4), 902–908. doi:10.1039/B912847F
-
Palza, H.; Reznik, B.; Kappes, M.; Hennrich, F.; Naue, I. F. C.; Wilhelm, M. (2010). Characterization of melt flow instabilities in polyethylene/carbon nanotube composites. Polymer, 51 (16), 3753–3761. doi:10.1016/j.polymer.2010.06.016
-
Böhmler, M.; Hartmann, N.; Georgi, C.; Hennrich, F.; Green, A. A.; Hersam, M. C.; Hartschuh, A. (2010). Enhancing and redirecting carbon nanotube photoluminescence by an optical antenna. Optics Express, 18, 16443–16451. doi:10.1364/OE.18.016443
-
Thirunavukkuarasu, K.; Hennrich, F.; Kamaras, K.; Kuntscher, C. A. (2010). Infrared spectroscopic studies on unoriented single-walled carbon nanotube films under hydrostatic pressure. Physical Review B, 81, 045424/1–12. doi:10.1103/PhysRevB.81.045424
-
Abouelsayed, A.; Thirunavukkuarasu, K.; Hennrich, F.; Kuntscher, C. A. (2010). Role of the pressure transmitting medium for the pressure effects in single-walled carbon nanotubes. Journal of Physical Chemistry C, 114, 4424–4428. doi:10.1021/jp100429y
-
Marquardt, C. W.; Grunder, S.; Blaszczyk, A.; Dehm, S.; Hennrich, F.; Löhneysen, H. von; Mayor, M.; Krupke, R. (2010). Electroluminescence from a single nanotube-molecule-nanotube junction. Nature Nanotechnology, 5, 863–67. doi:10.1038/nnano.2010.230
-
Vijayaraghavan, A.; Marquardt, C. W.; Dehm, S.; Hennrich, F.; Krupke, R. (2010). Imaging defects and junctions in single-walled carbon nanotubes by voltage-contrast scanning electron microscopy. Carbon, 48, 494–500. doi:10.1016/j.carbon.2009.09.067
Separation Technique on YouTube
The Separation Technique of metallic and semiconducting Carbon Nanotubes used by IBM (from minute 18:28)
Carbon Nanotubes for Digital Logic: https://www.youtube.com/watch?v=V1HN0w_aJgg